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(cont. ) 
qj = pjo” [ 1 + “‘;~~-$‘]‘I’ (i=2, 3) 

x = (r1 + 1) I (Yl - 1) 
Here the constants k, and ksdenote the isentropic 

indices for the liquid and solid component andyt is 

the gas isentropic exponent (the gas is assumed per- 
fect). 

In particular for air, water and quartz under the 

normal conditions we can assume that the true mass 

densities are 0.125, 102 and 265kg. sec2/m4, the 
velocities of sound are 330.1500 and 4500 m/set 
and the isentropic exponents are 1.4, 3 and 3, respec- 
tively. By virtue of the above, for air and water we 

have, respectively, p”~0c~~2=i.31~i04 kg/m2 and 

ploO clo2 = 2.25.108 kg/mJ. Using these values together 
with the formula (1.10) we find. that, for j1 = 0.01 

the velocity of sound in the air-water mixtute is 
c = 114m/sec, while for fl = 0.1 it falls to 38 m/set 

which is less than the velocity of sound in any of the components. The Fig. 1 depicts the 
velocities of the shock waves for air-water mixture obtained from (2.4) and (2.Q plot- 
ted (in solid lines) as the functions of flo versus the pressure ratio p / p. at the discon- 
tinuity where PO = 1 atm . Results of 121 are shown in broken lines. 
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Variational principles were used as a starting point for constructing models of various 
continuous media in [l-5], where their application was studied in detail. In the present 
paper which is a continuation of [6], the generalized variational relation is extended to 
embrace the media possessing surfaces of discontinuity of the crack type. A problem 
concerning the character of a singular solution to the plane problem near the ContollT of 
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a spreading crack is considered for a medium whose energy and stresses depend on the 
gradient of the deformation tensor. 

1. Let us consider an arbitrary isolated volume v (E’, p, Es, t) of a continuous 
medium referred to the Lagrangian coordinates El, Es and $,s and the time t and con- 

taining a part of the discontinuity sur- 
face x (Fig. 1). 

The law of motion represented by 

the functions 

xi= ti(%l, Es, Es, t> = 

= Ei + ui(%l, E2. E3, t) 

x4 = t (i= 1, 2, 3) 

will constitute the required relation 

* 
cK 

in the observer (‘) system defining 
the motion of the medium. 

In the Newtonian mechanics we 

assume that the equality x4 = t holds, 
and the absolute time is considered as 

Fig. 1 a scalar quantity. 
In paper [6] we considered the sur- 

faces of discontinuity which could move freely over the particles of the medium. The 
quantity 61, determining the normal displacement of the surface, was different from 
zero. In this paper we consider the case when 61, = 0 and where all variations 62 
of the surface of discontinuitv result from the fact that it is imbedded in the medium 

along the hyperbolic arc A$. The slope of this arc characterizes the rate of such an 
imbedding, i. e. the rate of propagation of the contour of a two-dimensional surface of 

discontinuity past the particles of the medium, in the space of initial states. We shall 

assume, for definiteness, that the particle displacement vector becomes discontinuous 
at the surface 2, Obviously, 2 will be cylindrical with respect to time within the space 

in question. 

We shall use the following variational relation [l]: 

sShJf&,+SIV+6W*=O 
vr 

(I.11 

to obtain the conditions at the surface 2. 
Here f! is a Lagrangian function depending, in a manner admitted by the invariance 

considerations, on the particle velocity p, the initial density p,,, the entropy S, the 
metric tensors gi, ’ and gik and on the gradients vko gij (g = d&/J gi, II). The func- 
tional 6w* which is given, contains terms describing the entropy changes, the body for- 

cesK,,and the energy necessary to form a new area element of the surface of disconti- 
nuity 

“) We shall construct our discussion within the framework of the theory of finite defor- 
mations and for this reason we must keep in mind two additional systems apart from the 
observer’s system, namely the actual system defining the metric gir, (Ea, t) of the present 
instant and the initial system with a metric tensor gih” (E”) = g+r,(ca, to). The latter and 
the observer’s system, can both be assumed Cartesian, provided that 6ih-O = &J.. 
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6W’” = 5 (pTGS + pK,Gu" + pK,v%x*) da4 + 5 ZqK.& (1.2) 
V4 *c* 

Functional 6w is represented by an integral of the linear combination of the defining 
parameters taken over the boundary a’t of the four-dimensional volume v4 and can be 
expressed in terms of the known h and SW*[l]. 

In evaluating the variations of action in (1.1) we take into account the fact that not 
only the parameters of the medium, but also the surface of discontinuity X along A$ 
itself will be the subject to variation. Let the surface 2 + 82 (Fig. 1) act as reference 

for the variable surface of discontinuity. The variation of action is defined as the prin- 
cipal linear part of the difference of integrals computed over the volume v,” = v4 - 

- (2 + SE) and the volume_ V,’ = V, - Z 

+I/gdz,= 
V1 

1 WI/i)dr,- ( A fidr, (4.3) 
V," V,' 

To compute this difference we shall change the region of integration of the first inte- 

gral to V, - Z , using the following change of variable 

t’ = t + St (E”, t), &j,=O 

the latter transforming A, B into A&? . Assuming that the Jacobian of the transforma- 

tion is equal to i + @t / at with the accuracy of up to the higher order infinitesimals, 
we obtain 

+I/gdz,= 1 Wl/ii)df,+ SAfi'Fdf4 (1.4) 

V4 VI’ Vi 
All variations appearing in the first term of (1.4) are computed in the manner analog- 

ous to that used in [6]. At the same time we assume that the total variation 6, of all 

quantities is given by 6,A = (6A + A’&) + A’Gx* (1.5) 
The variation & is understood to be a variation of the integral appearing in the left 

part of (1.4). The variation 6x4 is assumed an arbitrary constant in Newtonian mecha- 

nics. 
Assuming now that the function Al/g undergoing the variation may have integrable 

singularities on the contour A,B , we shall compute the integrals in (1.4) over the region 

V, - V, - X where V, denotes a narrow e-tube enveloping the contour A,B and 
merging smoothly with the surface 2. Having performed the variation we find, that the 
volume integral contains the variational Lagrange’s equations. Moreover, the equations 

of motion will accompany the variations ht", the energy equations the variation 6x” 
and the thermodynamic relation the variation 6s. We also obtain the boundary condi- 
tions on the main part of the surface 2 and assume them to hold (in the present case 
these conditions reduce to the absence of the force .nd momentum stresses on 2). Assum- 
ing further that all variations on the surface,n are &.nsal to zero we obtain, after the usual 

manipulations ( * ), 

lim 
IS( 

&u”da3 + 1 (Al &6t t 
E--r0 c 

Jonf - f, $ Plijni’) 
% E 

*) Certain inaccuracies which occurred in transforming the surface integral in [S], were 
brought to the author’s attention by Zhelnorovich [3]. For this reason the following mani- 
pulations are performed independently of [6]. 
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Q kiinko&gij) da, + s 2qxt6t dhs = 0 (13) 
AcB 

Here Z .,denotes the surface of the four-dimensional volume V,, &a is the area ele- 
ment of this surface:& is the element of the hyperarc A,B, nt and nj” denote the 
components of the vector normal to the surface 2, and to the contour d,B in the adja- 
cent space and the quantities J,, pkj and Qkij are defined by [6] 

The integration over the space-time surface X, and the space-time arc A$ in(1.6) 
can be performed by integration over their spatial parts 2, (c&s) and L (&), and the 
time t , The spatial parts are obtained from 2, and A,B by taking a cross section i; = 
= const . This can be done according to the following formulas: 

1 n; 1 cla,, = dqdt, 1 n; 1 dh, = d’h,dt 
Let us introduce the notation N= - r+ / i R; 1 and nj = ni / J ttj” J. Then, omitting 

the integration with respect to time, we obtain 

+ S (A f;Ndt - Qkiin&ij) da, + 1 27N6t d&l]= 0 
D & L 

(1.8) 
To perform further transformations, we must isolate the independent parts of the vari- 

ations &;j=~^,&j*f vj “6~~” defined on the surface. These will be the variations 
of displacements and their derivatives in the normal direction. Using the relations 

we can write (1.8) in the form 
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Taking into account the arbitrariness of the variations entering (1.9). we obtain the 

required relations which hold along the edge of the crack. These relations can be writ- 
ten more conveniently by in~oducing the cross section perpendicular to the contour L 
of the crack, using the line of intersection FL of this cross section with the surface 8, as 

a directrix, and regarding the surface x I itself as formed by the lines parallel to the 
contour L and passing through I?., We then obtain 

!$l $(J,NfVi$ p&tj + dhI = 0 (1.10) 
rc 

lim 
s 

nin,dAl = 0 (1.11) 
r-4 

rt 

(1.12) 

Here dh, is an element of the contour FL. Obviously. N is the rate of motion of the 
contour L through the space of initial states, while in the contour integral it denotes the 
projection of this velocity on the direction normal to 2,. 

Relations (1.10) and (1.11) reflect the fact that no external concentrated forces which 

could be described by the term 6D”* , act on the contour of the surface of discontinuity. 

Relation (1. I2) will constitute an additional indepen- 
dent condition representing the energy balance at the 

edge of Z, . When the deformations are small, i. e. 

when 
Eij = &(&j - giIo) Z ; (2 + 3) 

in which case we express the Lagrangian function by 
L = '/2p2i2 - p u (+j)+where u is the energy of 

Fig. i? 
a unit mass, the expression (1.19) simplifies consider- 

ably coinciding with the analogous equation (1.1) 

of [7]. 
2, We shall consider the problem on propagation of the surface of discontinuity of 

the crack type in a medium in which the energy and stresses depend on the deformations 
and their gradients. A system of defining equations can be obtained for such a medium 
from the variational relations (1.1) in which the expression L = '/sp d - p U(Ell, 
V$ij) is taken as the Lagrangian function and u is a positive definite quadratic func- 
tion of its arguments 

u = iei: + t_Leijeij + kteij, keij, k + Ic,eij, tiailt, j + 

-+- kgeij, i~kj, k + kb+j, iekk, j + k~iit jEl<kr j (2.1) 

Here h, p, k,, k,, k,, k4 and &, are the elastic constants. In particular, the stresses 

in such a medium are given by 1 au aQk;ii 
G PG =-&y-q- QMJ = & (2.2) 

Assuming that the state of plane detormatibn prevails in the continuous medium in 
the small neighborhood of each point of the crack contour, we shall direct the Z-axis 
along the surface of the crack, the X-axis in the direction of propagation of the crack 
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and they-axis in the direction perpendicular to it (Fig.2). The function I! (t) will define 
the law of motion of the crack edge. Basic relations of the problem follow LB]. The equa- 

tions of motion are 

po~=(h+&+p~u~- V2 (A 2 + BV’Ui) (;=I, z)\ (2.3) 

and the stresses expressed in terms of displacements are 

Here A, p9 ‘tl, ‘62, % A and B are elastic constants, last five of which are linear 

functions of k,, k,, k,, k, and k6. 
Denoting now the polar components of the displacement vector by U, and us, we shall 

seek a singular solution of the problem near the crack contour, in the following form [9] 

u, = r&o (4 + Pa (0, t) + o (rrn) 

tie = tie0 (4 + r-mp 03, 4 i- 0 (~“1 
(2.5) 

where a(@, t) and fi (0, t) are unknown functions. m >o is an undefined constant, 

r = [(s - 1)s + yV is the distance to the crack edge and 8 is the polar angle. 
The required value of the exponent mdefining the character of the singularity can 

be obtained, as in other similar cases 173, without solving the bounda~ value problem 

for (2.3). Condition (1.12) yields 

lim 
E--r0 

(2.6) 

where vw = d&,/at denotes the particle velocity, Fe is an arbitrary contour surround- 
ing the end of the crack 2 (t), n, = cos(rzz), n, = cos (ny) and 1’ is the rate of 
propagation of the crack. All functions appearing in (2.6) have been taken directly 
from the singular solution and we see from (2.6) that the integrand function sould exhi- 

bit a singularity of the type r-l when r-t0 . Taking into account the fact that 

&L au 
= at l=const I 

au ST -_ 
TE al: 

we easily see that the highest terms appearing in the expression under the integral sign 
are of the order 2772 - 4. From this, the necessary condition 2m - 4 = -1 of the 
energy balance yields n = “Ja. 

Simple manipulations confirm that solution (2. 5) satisfies also the corresponding 

boundary value problem for Eqs. (2.3) with the accuracy of up to the higher order infi- 
nitesimals. Assuming that U, is an even and ue is an odd function of 8 and inserting 

these functions into (2.3). we obtain the following expressions for a(f3, t) and @ (0, t): 

a(0, t) = c, cos (m + 1) 8 + c2 co.9 (m - 1) 0 + c3 cos (m - 3)8 

@I, 1) = -c, sin (m + l)e+ c, sin (m .- 1) 6 + OC, sin (m - 3) 8 (2.7) 

where Ci (t) are arbitrary functions of time and o is a known constant. 

Assuming now that the surface of the crack is load-free,we obtain from the system of 
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boundary conditions the following four homogeneous equations r2] for the four functions 
of time ci (t) 

When the function g is independent of the deformation gradients, these conditions 
coincide with the usual ones. Inserting (2.7) into (2.8) and computing the resulting 
determinant for the system of four equations for cj we find, that the determinant vanishes 

when m = ‘ja (due to the particular form of (2.7). two rows of the determinant become 
equal to zero when m = ‘1% and 8 = a) thus yielding a nontrivial solution to the prob- 
lem (2.3)-(2.8). Using functions (2.7) we can follow the asymptotic distribution of 
stresses near the crack contour. 

In conclusion we note, that inclusion of the higher order derivatives in the defining 
parameters results in still higher values of m . 

The author thanks L. I. Sedov for assessing this paper and V. A. Zhelnorovich for his 
comments. 
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